| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Wed Nov 10, 2010 6:17 pm    Post subject: Vanhegan | 
				     | 
			 
			
				
  | 
			 
			
				Fiendish, 5-877276, rated 2.2.0.1
 
 
I normally easily solve puzzles in this rating range, but I'm hopelessly stuck here after a Finned X-Wing and chain, both of which didn't make a dent.
 
 
 	  | Code: | 	 		  
 
+-------------+-------+---------+
 
| 4 6    3    | 9 5 7 | 18 18 2 |
 
| 2 57   57   | 1 8 3 | 49 49 6 |
 
| 8 1    9    | 2 6 4 | 3  5  7 |
 
+-------------+-------+---------+
 
| 1 24   46   | 5 3 9 | 67 27 8 |
 
| 7 289  28   | 6 4 1 | 29 3  5 |
 
| 3 59   56   | 8 7 2 | 16 19 4 |
 
+-------------+-------+---------+
 
| 5 3    24   | 7 1 8 | 24 6  9 |
 
| 9 78   1    | 4 2 6 | 5  78 3 |
 
| 6 2478 2478 | 3 9 5 | 78 24 1 |
 
+-------------+-------+---------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Wed Nov 10, 2010 8:51 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				There's an xy-chain - I couldn't see any wings etc.
 
 	  | Code: | 	 		  | (7=5)r2c3 - (5=6)r6c3 - (6=1)r6c7 - (1=8)r1c7 - (8=7)r9c7 ; r9c3<>7 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Wed Nov 10, 2010 10:02 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | peterj wrote: | 	 		  There's an xy-chain - I couldn't see any wings etc.
 
 	  | Code: | 	 		  | (7=5)r2c3 - (5=6)r6c3 - (6=1)r6c7 - (1=8)r1c7 - (8=7)r9c7 ; r9c3<>7 | 	 
  | 	  
 
Thanks, that's all it needed.
 
 
Is there a good way to look for potentially helpful chains? All I can do is pretty much try to find them by testing, basically a trial-and-error way of finding them. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Wed Nov 10, 2010 10:57 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				This puzzle probably has an interesting DP, but I can't find it. However, what I did find seems interesting.
 
 
 	  | Code: | 	 		   (2)r5c2 = HP(24-78)r49c2 = HP(78-24)b7q59 ; BUG contradiction!  =>  r5c2=2
 
 +--------------------------------------------------------------+
 
 |  4     6     3     |  9     5     7     |  18    18    2     |
 
 |  2     57    57    |  1     8     3     |  49    49    6     |
 
 |  8     1     9     |  2     6     4     |  3     5     7     |
 
 |--------------------+--------------------+--------------------|
 
 |  1     24    46    |  5     3     9     |  67    27    8     |
 
 |  7     289   28    |  6     4     1     |  29    3     5     |
 
 |  3     59    56    |  8     7     2     |  16    19    4     |
 
 |--------------------+--------------------+--------------------|
 
 |  5     3     24    |  7     1     8     |  24    6     9     |
 
 |  9     78    1     |  4     2     6     |  5     78    3     |
 
 |  6     2478  2478  |  3     9     5     |  78    24    1     |
 
 +--------------------------------------------------------------+
 
 # 30 eliminations remain
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Wed Nov 10, 2010 11:26 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Danny, I am relatively new to this - but have not seen a move like this    (I had to step through in SS to understand the logic!) I looked quickly at a BUG+3 scenario but convinced myself that a BUG situation did not exist - interesting that your move relies on a contradiction that would create a BUG. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Thu Nov 11, 2010 1:48 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Peter: This was a totally new approach for me. As I said, I was looking really hard for a DP. I noticed a strange pattern existed if I forced r9c3=78. I tried to turn it into a DP, but failed.
 
 
Occassionally, I'd also look at r5c2 in conjunction with r9c23. I kept running into a wall because the latter cells had four candidates and I couldn't remember how they could be used in a BUG scenario. So, I decided to see which candidates I could remove and create a BUG. I started with r5c2<>2, and the HP() relationships jumped out at me. I nearly fell out of my chair!
 
 
Regards, Danny | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Thu Nov 11, 2010 2:37 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I just read the posts and need to review them but here is a two step solution using a AUR and a BUG+1. 
 
 
AUR(28)r59c23 internal SIS r5c2=9,r9c23=4,r9c23=7; r5c3=8
 
(9)r5c2-(8)r5c2=(8)r5c3;
 
||
 
(4)r9c23-(4=2)r7c3-(2=8)r5c3;
 
||
 
(7)r9c23-(7=8)r8c2-r5c2=(8)r5c3;
 
 
BUG+1; r9c2=7
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Thu Nov 11, 2010 4:06 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Ted: when I (originally) tried the <28> UR, I ended up with:
 
 
 	  | Code: | 	 		   *--------------------------------------------------*
 
 | 4    6    3    | 9    5    7    | 18   18   2    |
 
 | 2    57   57   | 1    8    3    | 49   49   6    |
 
 | 8    1    9    | 2    6    4    | 3    5    7    |
 
 |----------------+----------------+----------------|
 
 | 1    24   46   | 5    3    9    | 67   27   8    |
 
 | 7    29   8    | 6    4    1    | 29   3    5    |
 
 | 3    59   56   | 8    7    2    | 16   19   4    |
 
 |----------------+----------------+----------------|
 
 | 5    3    24   | 7    1    8    | 24   6    9    |
 
 | 9    78   1    | 4    2    6    | 5    78   3    |
 
 | 6    48+7 27+4 | 3    9    5    | 78   24   1    |
 
 *--------------------------------------------------*
 
 | 	  
 
 
And just now realized that I could derive: r9c2<>4 & r9c3<>7 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Thu Nov 11, 2010 7:49 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Marty R. wrote: | 	 		  | Is there a good way to look for potentially helpful chains? All I can do is pretty much try to find them by testing, basically a trial-and-error way of finding them. | 	  
 
Ultimately for me it's pretty much trial-and-error - but I try to shortcut the process a little bit by making it more "victim" driven than chain driven i.e. think about what I want to achieve rather than just randomly follow bivalues.
 
1) pick a digit that is in the right sort of pattern - not a single x-wing pattern, not dozens of them everywhere
 
2) pick a victim cell that will be productive - a bivalue, a bilocal etc.
 
3) pick the pincers that would eliminate it
 
4) try to make a chain...
 
rinse - repeat 
 
So trial and error - but directed trial and error   | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Fri Nov 12, 2010 12:06 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Thanks Peter, I'll try and make my method more efficient. Besides, DT&E sounds a lot better than T&E.    | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |