| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| Clement 
 
 
 Joined: 24 Apr 2006
 Posts: 1113
 Location: Dar es Salaam Tanzania
 
 | 
			
				|  Posted: Sun May 19, 2013 10:47 pm    Post subject: May 20 VH |   |  
				| 
 |  
				| Type 1 UR 48 in Grid r37c79; r7c9<>48 solves it. 	  | Code: |  	  | +--------------+----------+-------------+
 | 25   59  8   | 69 4 1   | 7  3   26   |
 | 4    6   3   | 8  2 7   | 9  5   1    |
 | 127  179 17  | 5  3 69  | *48 26  *48   |
 +--------------+----------+-------------+
 | 9    13  16  | 4  5 36  | 2  8   7    |
 | 78   378 5   | 2  1 38  | 6  4   9    |
 | 68   2   4   | 69 7 689 | 5  1   3    |
 +--------------+----------+-------------+
 | 1678 178 167 | 3  9 5   | *48 267 *2468 |
 | 3    58  2   | 7  6 4   | 1  9   58   |
 | 567  4   9   | 1  8 2   | 3  67  56   |
 +--------------+----------+-------------+
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| roaa 
 
 
 Joined: 18 Apr 2009
 Posts: 112
 Location: Sweden
 
 | 
			
				|  Posted: Mon May 20, 2013 8:09 am    Post subject: |   |  
				| 
 |  
				| I used an xy-wing (256) forcing r9c1 <> 5 giving r8c2 = 8 which solves it. |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Mon May 20, 2013 3:11 pm    Post subject: |   |  
				| 
 |  
				|  	  | roaa wrote: |  	  | I used an xy-wing (256) forcing r9c1 <> 5 giving r8c2 = 8 which solves it. | 
 
 I used the same move, but r8c2=5, not 8, since it's the only 5 left after the XY-Wing elimination.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| RobertRattley 
 
 
 Joined: 24 Jun 2007
 Posts: 118
 Location: Australia
 
 | 
			
				|  Posted: Tue May 21, 2013 2:22 am    Post subject: |   |  
				| 
 |  
				| I, who take inordinate pleasure in secondary matters, was delighted to find that no fewer than 7 "sole candidate"s seemed to be necessary during the preliminaries (and more than 7 were available). 
 And, just to be slightly different:  the xy-wing elimination settles the 5 in row 9 and that solves it.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |