| View previous topic :: View next topic   | 
	 
	
	
		| Author | 
		Message | 
	 
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Fri May 29, 2009 5:42 pm    Post subject: Unchained! | 
				     | 
			 
			
				
  | 
			 
			
				Here are lots of chains in this one, but there is another way ...
 
 	  | Code: | 	 		  Puzzle: M4844513sh(15)
 
+-------+-------+-------+
 
| . . . | 6 . . | 8 . . | 
 
| 4 . 6 | . . . | . 3 . | 
 
| . 2 . | 8 3 1 | . 9 . | 
 
+-------+-------+-------+
 
| . . 7 | . . . | . . 5 | 
 
| 6 . . | . . . | . . 9 | 
 
| 1 3 2 | . 7 . | . . . | 
 
+-------+-------+-------+
 
| . . . | . . 9 | . . . | 
 
| . . . | . 4 3 | 7 . . | 
 
| . . . | 5 . . | . . 4 | 
 
+-------+-------+-------+ | 	  Keith | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Sat May 30, 2009 6:09 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				  
 
 
Dang!!! I bet Keith made the <268> DP work, but I (and my solver) had to plow through rocky terrain to make any headway. Fortunately, I recently updated the UR logic in my solver to identify possible URs that it can't currently handle.
 
 
1) possible UR [r79c58] => manually finding [r9c5]<>6
 
2) UR Type 4 [r78c18] => [r7c18]<>8
 
3) Skyscraper r57\c3 => [r4c5],[r9c6]<>8
 
4) possible UR [r49c56] => manually finding [r4c6]<>2
 
5) BUG+3 => manually finding [r7c4]<>2
 
 
Personally, I don't have anything against a single-step 6-cell XY-Chain.    | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat May 30, 2009 7:40 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Danny,
 
 
This was kind of inspired by one of your recent posts! 	  | Code: | 	 		  +----------------+----------------+----------------+
 
| 39   19   13   | 6    5    4    | 8    2    7    | 
 
| 4    8    6    | 27   9    27   | 5    3    1    | 
 
| 7    2    5    | 8    3    1    | 4    9    6    | 
 
+----------------+----------------+----------------+
 
| 89   49   7    | 34   268  268  | 23   1    5    | 
 
| 6    5    48   | 34   1    28   | 23   7    9    | 
 
| 1    3    2    | 9    7    5    | 6    4    8    | 
 
+----------------+----------------+----------------+
 
|25-8  47   48   | 27  +268  9    | 1  +56-8  3    | 
 
| 58   6    9    | 1    4    3    | 7    58   2    | 
 
| 238  17   13   | 5   +268  2678 | 9    68   4    | 
 
+----------------+----------------+----------------+ | 	  
 
There is a  Type 4 <58> UR, taking out <8> in R7C18.
 
 
But, wait!  There is a Type ? <68> UR:  Either there is a <2> in B8C5, or R7C8 is <5>. Either way, R7C4 is <7>.   
 
 
The problem is, an elimination made by the <58> UR hides the <68> UR.
 
 
Keith | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Sat May 30, 2009 8:54 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | keith wrote: | 	 		  Danny,
 
 
This was kind of inspired by one of your recent posts! 	  | Code: | 	 		  +----------------+----------------+----------------+
 
| 39   19   13   | 6    5    4    | 8    2    7    | 
 
| 4    8    6    | 27   9    27   | 5    3    1    | 
 
| 7    2    5    | 8    3    1    | 4    9    6    | 
 
+----------------+----------------+----------------+
 
| 89   49   7    | 34   268  268  | 23   1    5    | 
 
| 6    5    48   | 34   1    28   | 23   7    9    | 
 
| 1    3    2    | 9    7    5    | 6    4    8    | 
 
+----------------+----------------+----------------+
 
|25-8  47   48   | 27  +268  9    | 1  +56-8  3    | 
 
| 58   6    9    | 1    4    3    | 7    58   2    | 
 
| 238  17   13   | 5   +268  2678 | 9    68   4    | 
 
+----------------+----------------+----------------+ | 	  
 
There is a  Type 4 <58> UR, taking out <8> in R7C18.
 
 
But, wait!  There is a Type ? <68> UR:  Either there is a <2> in B8C5, or R7C8 is <5>. Either way, R7C4 is <7>.   
 
 
The problem is, an elimination made by the <58> UR hides the <68> UR.
 
 | 	  
 
Interesting. I can't get the second UR to work cleanly unless I first perform half of the UR Type 4.
 
(Yes, I know that an eliminated candidate can still be considered present in a UR, but I don't have to like it.)
 
 
1) UR Type 4 => [r7c1]<>8 but not [r7c8]<>8
 
2) UR Type ? => [r7c4]<>2
 
 
If I didn't already drink, this would drive me to it.    
 
 
Congrats Keith!
 
 
Danny | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat May 30, 2009 9:14 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Danny,
 
 
I was probably lucky with this example, since there are no easy detours.
 
 
At the point I posted, these are all true:
 
 
 	  | Quote: | 	 		  There is a Type 4 <58> UR, taking out <8> in R7C18.
 
 
But, wait! There is a Type ? <68> UR: Either there is a <2> in B8C5, or R7C8 is <5>.  | 	  
 
 
The lesson is, consider ALL the UR implications before making any eliminations.
 
 
By the way, I have no idea how to write code to solve this puzzle.  Perhaps, collect UR implications.  If they do not make any progress, keep them and re-test them after making further eliminations?
 
 
I'll drink to that!
 
 
Keith | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Sat May 30, 2009 9:58 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  .------------------.------------------.------------------.
 
| 39    19    13   | 6     5     4    | 8     2     7    |
 
| 4     8     6    |*27    9    *27   | 5     3     1    |
 
| 7     2     5    | 8     3     1    | 4     9     6    |
 
:------------------+------------------+------------------:
 
| 89    49    7    | 34    268   268  | 23    1     5    |
 
| 6     5    *48   | 34    1    *28   | 23    7     9    |
 
| 1     3     2    | 9     7     5    | 6     4     8    |
 
:------------------+------------------+------------------:
 
|U258   47  *48    |-27  *268    9    | 1    U568   3    |
 
|U58    6     9    | 1     4     3    | 7    U58    2    |
 
| 238   17    13   | 5   *268  *678   | 9    *68    4    |
 
'------------------'------------------'------------------' | 	  
 
Ironically,    
 
you can perform a strong link on the {5,8} UR to prove r7c4 is 7.
 
the UR {5,8} says that either the 2 in r7c1 is true or the 6 in r7c8 is true.
 
 
UR58[(2)r7c1 = (6)r7c8] - (6=8)r9c8 - (8)r9c56 = (8)r7c5 - (8)r7c3 = (8)r5c3 - (8=2)r5c6 - (2)r2c6 = (2)r2c4; r7c4 <> 2
 
 
means r7c4 = 7
 
-----
 
edited because for some reason the 2's in r79c5 were missing in my grid.  I have now added them.
  Last edited by storm_norm on Sat May 30, 2009 11:06 pm; edited 1 time in total | 
			 
		  | 
	 
	
		| Back to top | 
		 | 
	 
	
		  | 
	 
	
		 | 
	 
 
  
	 
	    
	   | 
	
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum
  | 
   
 
  
Powered by phpBB © 2001, 2005 phpBB Group
  
		 |